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LETTER TO THE EDITOR 

Lattice gas model for liquid-vapour transition: 
non-singular diameter without particle-hole symmetry 

J SakS and C Vausee 
t Serin Physics Laboratory, Rutgers University, Piscataway, NJ 08854, USA 
$ Department of Physics and Laboratory for Research in the Structure of Matter, University 
of Pennsylvania, Philadelphia, PA 19104, USA 

Received 21 April 1980 

Abstract. A lattice gas model for the liquid-vapour transition without particle-hole 
symmetry and in the Ising universality class is presented. The coexistence curve diameter is 
an analytic function of temperature. The relation of this model to others which have 
singular diameters and also to renormalisation group calculations is discussed. 

There has been much activity on determining the nature of the singularity in the 
coexistence curve diameter near the liquid-vapour critical point since the work of 
Widom and Rowlinson (1970) (WR). The diameter pD = (pL+pv)/2 (where p~ is the 
fluid’s density in the liquid phase, pv the vapour density) is a measure of the degree of 
asymmetry in the liquid-vapour transition. Since the usual Ising lattice gas model 
(Yang and Lee 1952) has a symmetric diameter, pD = f, one is led to consider models of 
a more general character which still belong to the Ising universality class (it is generally 
believed, and confirmed by experiment, that real fluids have Ising exponents (Hayes 
and Carr 1977, Hocken and Moldover 1976)) and yet produce asymmetry in the 
diameter. In this Letter we present such a model. 

The symmetric diameter of the Ising lattice gas model is a consequence of particle- 
hoIe symmetry (Widom and Rowlinson 1970), n, * 1 - n,, where n, = 0, 1 is the 
occupation number of lattice site x. The lack of such a symmetry will have as a 
consequence a diameter which does not coincide with the critical isochore. It is 
moreover believed that pD will have a singular temperature dependence: p~ - p C E  
(Tc- T) l -a  (a is the specific heat exponent). We show on a simple model that this 
singular dependence is not a necessary consequence of the particle-hole asymmetry. 

Our fluid is a lattice analogue of the Widom-Rowlinson model although there is a 
fundamental difference between them as we shall see later. The atoms are spheres 
which can occupy sites of a d-dimensional hypercubic lattice. The radius of each sphere 
is lar er than 4 2 ,  a being the distance between nearest neighbours, but smaller than 

accept an arbitrary number of atoms. Let us consider an arbitrary configuration of N 
spherical atoms and denote by W(xl, . . . x N )  the total volume covered by these spheres; 
x1 . , . xN are the lattice points occupied by the spheres (some x i ’s  may be the same). 
Now we define the energy of this configuration as 

a/ / 2, so that only spheres which are nearest neighbours can overlap. Each site can 

U = EO( W(xl . . X N )  -NuO) 
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where eo is a parameter and vo is the volume of the sphere. This expression can be 
rewritten as 

U = Eo( vo c - v1 c e(nx)e(nxl) -  U o ~ )  
(x.x’) 

where n, is the number of atoms at the site x, e(n)  = 1 if n > O,e(O) = 0, u1 is thewerlap 
volume of two spheres which are nearest neighbours and the symbol (x, x’) denotes the 
bond between two nearest neighbours x and x’. Denoting E =EOVI, ~ O = E O ~ O ,  and 
introducing the chemical potential p, we get the grand Hamiltonian 

The grand partition function ZG is a sum over all configurations {n,} of exp( - X), where 
X i s  the effective Hamiltonian HIT, with the temperature T measured in energy units. 
The configuration sum may be rearranged in the following way. There are many 
microscopic configurations {n,} which correspond to a fixed configuration {e,}. (0, = 1 
if the site x is occupied by some atoms and 0, = 0 if the site is empty.) Therefore we first 
sum over all {n,} for a given {e,} and then sum over {e,}. When the first step is 
performed, the term - ( p  + po) Z, n, is replaced by -He&, T )  Z, 0, (since Z, 6, is the 
number of occupied sites in the lattice for fixed {e,}) where 

(2) eXP(pes(p, TI/ T )  = (exp[ - ( p  + E)/  T I  - 1)-l. 
Hence the grand partition function is 

where 

and $(p ,  T )  = peff(p, T ) - p o .  We see that % is the Ising lattice gas model in the 0, 
variables. For convenience we change to Ising spins s, = 213, - 1 (8,  = * 1). Then the 
thermodynamic potential per site is 

( 5 )  w = - 4 ( $ + g z E ) + w I s i n g  1 

where z is the number of nearest neighbours and wising is the thermodynamic potential 
of the Ising model with ‘external field’ 

h = (1/2T)($ + f z ~ )  (6) 
and coupling constant K = 44T.  The density of particles per site, p = - ( ~ 3 w / d p ) ~ ,  as a 
function of (p,  T )  is then 

(7) P(P ,  TI =f(l -exp[(r. + P O ) / T I ) - ~ ( ~  +(Sx)Ising) 

where (s,JIsing is the magnetisation per site in an external field. 
The coexistence boundaries may now be determined. In the two-phase region, 

T C T,, the coexistence curve is given by a segment of the line h = 0 = 6 + fze. In the 
(p,  2’) plane this is the analytic curve p = -po-  T In(1 +exp[(ze -2po)/2T]). Hence 
on the coexistence curve, the boundaries of the two-phase region in the (p,  T )  plane are 

p*(T) = f(1 + exp( - zef/2T))(1 * m ( T ) )  (8) 
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where ZE’ 5 Z E  - 2p0 and m( T )  is the spontaneous magnetisation of the Ising model, the 
plus and minus referring to the liquid and vapour phases respectively. The diameter 
PD = (P+ +p-)/2 is 

~ D = ~ ( l + e x p ( - z r ’ / 2 ~ ) ) .  (9) 

This exact result in dimension d > 1 is an analytic function of T. As a particular case, the 
two-dimensional (z  = 4) model is given in figure 1 since an exact solution has been given 
by Yang (1952) for the spontaneous magnetisation. 

Figure 1. Liquid-vapour coexistence boundary (full curves) in the density-temperature 
plane for d =2,  z =4,  p o = O .  The broken curve is the diameter. The entire range 
0 < T < T, is show? in ( a )  while theregion near the critical point 0.9T, < T < T, is shown in 
( b ) .  T, = 2~/( ln(42 - l)l, pc = 1/42. 

In summary, we have presented an exactly solvable model for the liquid-vapour 
transition which lacks particle-hole symmetry yet has an analytic diameter. The 
interaction was constructed in close analogy to the WR model but our model does not 
show the (Tc-  T) l -a  dependence of the diameter. Also it does not have many-body 
forces and cannot be derived from an equivalent mixture in which an effective attraction 
between atoms is caused by their repulsion from a different kind of atom. This type of 
interaction is also possible on a lattice but leads to a much more complicated Hamil- 
tonian containing three- and four-body forces even in the simplest case (when the radius 
of the spheres barely exceeds the lattice spacing). The crucial difference between the 
WR model and ours is that the overlap volume between neighbouring spheres does not 
contain any lattice points and the phase transition is not equivalent to a demixing 
transition of a two-fluid system. On the other hand the existence of the singularity in the 
WR model was deduced from symmetry arguments based on the underlying demixing 
transition. In such a transition, when one plots the density of one component, it is 
expected that the diameter has a singularity of the ( T, - T)l -a  type. 

Mermin (1971a) has proposed a ‘bar’ model with four-body interactions and a 
decorated lattice gas (Mermin 1971b), both without particle-hole symmetry and having 
dpD/dT-hlT,- TI in two dimensions. Also in these cases the interactions between 
particles can be represented in terms of a two-fluid model. Other models are discussed 
by Rehr (1972). 

However, in simple fluids, interacting via binary forces, it follows from the renor- 
malisation group calculations (Vause and Sak 1980a, b) that the temperature depen- 
dence of pD is singular, but with the exponent ps = 1 + ; E  + O(E*) which is related to the 
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anomalous dimension of the fifth power of the order parameter and is not related to a. 
We do not know the value of ps for the Ising model in dimension 2 but it could be that 
corrections to scaling are all analytic or absent in this case. 

This work was supported by NSF grant no. DMR 79-21360 and MRL program no. 
522503. 
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